• Skip to primary navigation
  • Skip to main content

The Conboy Laboratory

Engineering Longevity

  • Home
  • About
  • The Lab
    • Members
    • Past Members
  • Research
    • Discoveries & Projects
  • Science Publications
  • Patents
  • Entrepreneurship
  • Contact and Jobs

Publications

Here lies all of this lab's publications by order of date. Click on the title of the paper to get more information about a publication, including the abstract, date of publication, and open access link if applicable.

Freecyto: Quantized Flow Cytometry Analysis for the Web

Flow cytometry (FCM) is an analytic technique that is capable of detecting and recording the emission of fluorescence and light scattering of cells or particles (that are collectively called “events”) in a population. A typical FCM experiment can produce a large array of data making the analysis computationally intensive. Current FCM data analysis platforms, while […]

Rejuvenation of Three Germ Layers Tissues by Exchanging Old Blood Plasma With Saline-Albumin.

Heterochronic blood sharing rejuvenates old tissues, and most of the studies on how this works focus on young plasma, its fractions, and a few youthful systemic candidates. However, it was not formally established that young blood is necessary for this multi-tissue rejuvenation. Here, using our recently developed small animal blood exchange process, we replaced half […]

Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin.

Heterochronic blood sharing rejuvenates old tissues, and most of the studies on how this works focus on young plasma, its fractions, and a few youthful systemic candidates. However, it was not formally established that young blood is necessary for this multi-tissue rejuvenation. Here, using our recently developed small animal blood exchange process, we replaced half […]

Rejuvenation of brain, liver and muscle by simultaneous pharmacological modulation of two signaling determinants, that change in opposite directions with age.

we pursued the simultaneous youthful in vivo calibration of two determinants: TGF-beta which activates ALK5/pSmad 2,3 and goes up with age, and oxytocin (OT) which activates MAPK and diminishes with age. The dose of Alk5 inhibitor (Alk5i) was reduced by 10-fold and the duration of treatment was shortened (to minimize overt skewing of cell-signaling pathways), yet the positive outcomes were broadened, as compared with our previous studies. Alk5i plus OT quickly and robustly enhanced neurogenesis, reduced neuro-inflammation, improved cognitive performance, and rejuvenated livers and muscle in old mice. Interestingly, the combination also diminished the numbers of cells that express the CDK inhibitor and marker of senescence p16 in vivo. Summarily, simultaneously re-normalizing two pathways that change with age in opposite ways (up vs. down) synergistically reverses multiple symptoms of aging.

Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor.

We used CRISPR-Chip to analyse DNA samples collected from HEK293T cell lines expressing blue fluorescent protein, and clinical samples of DNA with two distinct mutations at exons commonly deleted in individuals with Duchenne muscular dystrophy. In the presence of genomic DNA containing the target gene, CRISPR-Chip generates, within 15 min, with a sensitivity of 1.7 fM and without the need for amplification, a significant enhancement in output signal relative to samples lacking the target sequence. CRISPR-Chip expands the applications of CRISPR-Cas9 technology to the on-chip electrical detection of nucleic acids.

Graphene-based biosensor for on-chip detection of bio-orthogonally labeled proteins to identify the circulating biomarkers of aging during heterochronic parabiosis.

Herein, we propose a lab-on-a-chip technology, termed Click-A+Chip for facile and rapid digital detection of ANL-labeled proteomes present in minute amount of sample, to replace conventional assays. Click-A+Chip is a graphene-based field effect biosensor (gFEB) which utilizes novel on-chip click-chemistry to specifically bind to ANL-labeled biomolecules. In this study, Click-A+Chip is utilized for the capture of ANL-labeled proteins transferred from young to old parabiotic mouse partners. Moreover, we were able to identify the young-derived ANL-labeled Lif-1 and leptin in parabiotic systemic milieu, confirming previous data as well as providing novel findings on the relative levels of these factors in young versus old parabionts.

A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood

Heterochronic parabiosis rejuvenates the performance of old tissue stem cells at some expense to the young, but whether this is through shared circulation or shared organs is unclear. Here we show that heterochronic blood exchange between young and old mice without sharing other organs, affects tissues within a few days, and leads to different outcomes […]

Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homologous directed DNA repair

Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR associated protein 9 (Cas9)-based therapeutics, especially those that can correct gene mutations via homology-directed repair, have the potential to revolutionize the treatment of genetic diseases. However, it is challenging to develop homology-directed repair-based therapeutics because they require the simultaneous in vivo delivery of Cas9 protein, guide RNA and […]

Unexpected evolutionarily conserved rapid effects of viral infection on oxytocin receptor and TGF-β/pSmad3.

BACKGROUND: shRNA lentiviral vectors are extensively used for gene knockdowns in mammalian cells, and non-target shRNAs typically are considered the proper experimental control for general changes caused by RNAi. However, the effects of non-target lentivirus controls on the modulation of cell signaling pathways remain largely unknown. In this study, we evaluated the effect of control […]

Application of bio-orthogonal proteome labeling to cell transplantation and heterochronic parabiosis.

Clarifying the source of proteins in mixed biological environments, such as after transplantation or parabiosis, remains a challenge. Here, the authors address this need with a mouse strain that incorporates a methionine derivate into proteins, allowing for their detection using click chemistry and antibody arrays.

  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to page 4
  • Go to Next Page »

Copyright © 2025 · Berkeley CoE Theme on Genesis Framework · WordPress · Log in